

INSTITUTO TECNOLÓGICO DE AERONÁUTICA CE-240 PROJETO DE SISTEMAS DE BANCO DE DADOS

Prof. Dr. Adilson Marques da Cunha

Lista de Exercícios 3

Terceira Forma Normal (3NF) do Aplicativo de Banco de Dados

Antônio Magno Lima Espeschit antonio.espeschit@gmail.com

São José dos Campos - SP

13 de abril de 2009

Sumário

1	Intro	ıtrodução 1					
	1.1	Título					
	1.2	Motivação					
	1.3	Objetivo					
2	Cont	eúdo					
	2.1	Contextualização					
	2.2	Definição das Entidades					
	2.3	Definição dos Atributos das Entidades					
	2.4	Normalização					
		2.4.1 Primeira Forma Normal (1NF)					
		2.4.2 Segunda Forma Normal (2NF)					
		2.4.3 Terceira Forma Normal (3NF)					
	2.5	Exemplos de Dados					
	2.6	Dicionarização no ERWin 4.0					
	2.7	Modelo Entidade-Relacionamento					
	2.8	Versão 1.0 do Modelo Lógico					
	2.9	Versão 1.0 do Modelo Físico					
3	Conc	clusão e Comentários1					
4	Refe	rências1					

1 Introdução

Em atendimento à Lista de Exercícios (ListEx) 3, foram realizadas as atividades:

- Desenvolver um Protótipo de Aplicativo de Banco de Dados versão 1.0 do módulo ADE
 (Aplicação de Filtros e Cálculo de Estatísticas) do Sistema de Aquisição, Tratamento,
 Monitoramento e Difusão de Dados Hidrológicos (Sis ATMH).
- Normalizar as entidades [1] desde a Primeria Forma Normal (1NF) até a Terceira Forma Normal (3NF).
- Definir exemplos de dados que preenchem as tabelas definidas.

Em atendimento à sugestão da página 6.1d.7 da aula "A 10^a Técnica de BD – Trigramação" [1], foram realizadas as atividades:

- Elaborar a versão 1.0 do Dicionário de Dados do módulo **ADE** na ferramenta Erwin 4.0.
- Elaborar o Modelo Entidade-Relacionamento do módulo **ADE** na 3NF.

Este texto sumaria os resultados obtidos.

1.1 Título

Obtenção da Terceira Forma Normal (3NF) do Módulo de Aplicação de Filtros e Cálculo de Estatísticas (AFE).

1.2 Motivação

Ao exercitar as técnicas de normalização e modelagem do curso CE-240 iremos obter um modelo de dados mais robusto e menos susceptível a defeitos, erros e falhas na inclusão, na atualização e na exclusão de dados.

É uma oportunidade para aplicarmos, na prática, os conceitos teóricos aprendidos em sala de aula. Além disso, é mais um passo na direção da montagem do Sis ATMH, que é o objetivo final do curso.

1.3 Objetivo

Desenvolver a versão 1.0 do modelo de dados do *Módulo de Aplicação de Filtros e Cálculo de Estatísticas* (**AFE**), na *Terceira Forma Normal (3NF)*, visando melhorar os tempos de acesso e reduzir anomalias de inclusão, atualização e exclusão de dados.

2 Conteúdo

Deve-se ressaltar que as informações de contextualização abaixo descritas foram arbitradas pelo autor e não representam necessariamente a realidade da Agência Nacional de Águas. São apenas de conjecturas para permitir a resolução desta Lista de Exercícios.

2.1 Contextualização

A Agência Nacional de Águas (ANA) instalou Pontos de Coleta de Dados (PCDs) em diversos locais da bacia Amazônica.

Cada PCD possui um código de identificação e integra diversos tipos de medidores como, por exemplo:

- **GPS**[4]: registra a localização do PCD via latitude, longitude e altitude medidas de acordo com a projeção *Universal Transverse Mercator* (UTM) e o datum WGS84 [5].
- Limnígrafo[2]: registra a altura da lâmina d'água de um rio, em metros.
- **Pluviógrafo**[3]: registra a altura pluviométrica acumulada, em milímetros, ao longo do tempo. A partir da altura pluviométrica pode-se inferir a precipitação pluviométrica numa certa área e num certo intervalo de tempo.
- **Termógrafo**: registra a variação da temperatura, em graus Celsius, com o tempo.

Em intervalos de tempo regulares, que podem variar de 1 a 4 semanas, um operador visita o PCD para coletar dados e dar manutenção nos medidores.

Ao retornar para seu escritório, o operador preenche formulários padronizados a partir dos dados coletados em vários PCDs.

Mensalmente, o operador envia os formulários preenchidos para um escritório central no qual são digitados em um sistema da ANA que consiste e consolida estes dados em séries históricas de dados hidrológicos.

O *Módulo de Aplicação de Filtros e Cálculo de Estatísticas* (**AFE**) deve propiciar o armazenamento destes dados em um Banco de Dados Relacional, permitindo a aplicação de filtros, a identificação de *outliers*[6], o cálculo de estatísticas e o tratamento padronizado de dados espúrios.

2.2 Definição das Entidades

A partir da contextualização, definimos as entidades:

- **PCD**: identifica o Ponto de Coleta de Dados.
- **MEDIDOR**: identifica o equipamento que fez a medida. Um PCD contém um ou mais medidores. Cada medidor mede um determinado parâmetro como altura da lâmina d'água, precipitação pluviométrica ou temperatura.
- **OPERADOR**: identifica quem coletou o dado medido. Cada operador realiza medidas numa certa data em um determinado PCD.
- **SERIE**: armazena séries históricas dos dados medidos.
- **FILTRO**: identifica os filtros que podem ser aplicados a um subconjunto da série de dados. Cada filtro corresponde a um algoritmo codificado na forma de "stored procedure" no Banco de Dados.
- **ESTATISTICA**: identifica estatísticas (isto é, valores mínimo, média, máximo e desvio-padrão) calculadas para uma série de dados em um certo período de tempo.

• **PERIODO**: identifica o período (dia, mês ou ano) para o qual foram calculadas as estatísticas para a série de dados.

2.3 Definição dos Atributos das Entidades

Em seguida, definimos os atributos de cada entidade:

- **OPERADOR**: identificador do operador, nome, contato.
- **PCD**: identificador do PCD, data de instalação, localização.
- **MEDIDOR**: identificador do medidor, parâmetro medido, descrição.
- **SERIE**: identificador do OPERADOR, identificador do PCD, identificador do MEDIDOR, data da leitura, valor lido, outlier.
- **FILTRO**: identificador do filtro, nome, descrição.
- **ESTATISTICA**: identificador do PCD, identificador do período, dia, mês, ano, mínimo, média, máximo, desvio-padrão.
- **PERIODO**: identificador do período, nome, descrição.

2.4 Normalização

Os dados hidrológicos poderiam ser armazenados nesta tabela:

```
DADOS_HIDROLOGICOS_LISTAO (<u>dados_operador</u>, <u>dados_pcd</u>, <u>dados_medidor</u>, data_leitura, valor_medido, outlier)
```

Os dados estatísticos, calculados a partir dos dados hidrológicos, podeam ser armazenados nesta:

DADOS_ESTATISTICOS_LISTAO (<u>identificador_pcd</u>, <u>dados_medidor</u>, <u>dados_periodo</u>, dia, mes, ano, minimo, media, maximo, desvio_padrao).

Finalmente, os filtros poderiam ser definidos em uma terceira tabela:

```
FILTRO (identificador_filtro, nome_filtro, descricao_filtro)
```

2.4.1 Primeira Forma Normal (1NF)

Diz-se que uma tabela ou relação está na 1NF quando todos os seus registros possuem o mesmo conjunto de atributos e esses atributos são atômicos, isto é, possuem itens indivisíveis.

Logo, a tabela DADOS_HIDROLOGICOS_LISTAO apresentada não está na Primeira Forma Normal pois possui dados não atômicos:

• **dados_operador**: pode ser subdividido em (<u>chapa_operador</u>, nome_operador, contato_operador). Podemos considerar que contato_operador não é atômico, obtendo (<u>chapa_operador</u>, nome_operador, telefone_operador, endereco_operador).

- **dados_pcd**: pode ser subdividido em (<u>id_pcd</u>, <u>data_inst_pcd</u>, local_pcd). Considerando que local_pcd não é atômico, obtemos (<u>id_pcd</u>, <u>data_inst_pcd</u>, latitude_pcd, longitude_pcd, altitude_pcd).
- **dados_medidor**: pode ser subdividido em (id_medidor, parametro_medido).

Dependendo do contexto, alguns atributos poderiam ser ainda subdivididos. Por exemplo: telefone_operador poderia ser subdividido em ddd_telefone_operador e telefone_operador. No entanto, por simplicidade, iremos considerar um contexto no qual todos os atributos apresentados são atômicos. Logo, a tabela DADOS_HIDROLOGICOS abaixo descrita contém os mesmos dados que a DADOS_HIDROLOGICOS_LISTAO, porém a tabela DADOS HIDROLOGICOS está na 1NF:

```
DADOS_HIDROLOGICOS (<a href="mailto:chapa_operador">chapa_operador</a>, nome_operador, telefone_operador, endereco_operador, <a href="mailto:id_pcd">id_pcd</a>, <a href="mailto:data_inst_pcd">data_inst_pcd</a>, latitude_pcd, longitude_pcd, altitude_pcd, <a href="mailto:ude_pcd">outlier</a>) valor_medido, outlier)
```

Analogamente, a tabela DADOS_ESTATISTICOS_LISTAO contém o atributo dados_periodo que pode ser subdividido em id_periodo, nome_periodo, descricao_periodo e o atributo dados_medidor que pode ser subdividido em id_medidor, parametro_medido. Realizando estas subdivisões, obtemos a tabela DADOS_ESTATISTICOS na 1NF:

DADOS_ESTATISTICOS (id_pcd, id_medidor, parametro_medido, id_periodo, nome_periodo, description: dia, mes, ano, minimo, medido, medido</a

A tabela filtro já está na 1NF:

FILTRO (id_filtro, nome_filtro, descricao_filtro)

2.4.2 Segunda Forma Normal (2NF)

A tabela DADOS_HIDROLOGICOS possui uma anomalia que prejudica as operações de atualização: para identificarmos um registro temos que informar o valor de todos os campos chave (os quais aparecem sublinhados).

A atualização seria menos trabalhosa se tivéssemos que informar apenas a chave da qual o atributo depende funcionalmente. Por exemplo, para alterar nome_operador poderíamos informar apenas chapa_operador.

Podemos remover esta anomalia convertendo a tabela para a Segunda Forma Normal (2NF) na qual **todos os atributos não-chave referem-se à chave inteira e não a partes da chave**. Para obter este efeito, subdividimos DADOS_HIDROLOGICOS em diversas tabelas.

```
OPERADOR(<a href="mailto:chapa_operador">chapa_operador</a>, nome_operador, telefone_operador, endereco_operador)

PCD(<a href="mailto:id_pcd">id_pcd</a>, <a href="mailto:data_inst_pcd">data_inst_pcd</a>, <a href="mailto:latitude_pcd">latitude_pcd</a>, <a href="mailto:latitude_pcd">latitude_pcd</a>, <a href="mailto:altitude_pcd">altitude_pcd</a>, <a href="mailto:a
```

Analogamente, na tabela DADOS_ESTATISTICOS seria interessante atualizar nome_periodo informando apenas a chave id_periodo. Para remover esta anomalia, convertemos a tabela para 2NF obtendo:

```
PERIODO (id_periodo, nome_periodo, descricao_periodo)
```

ESTATISTICA (<u>id_pcd</u>, <u>id_medidor</u>, <u>id_periodo</u>, dia, mes, ano, minimo, media, maximo, desvio_padrao)

A tabela filtro já está na 2NF:

```
FILTRO (id_filtro, nome_filtro, descricao_filtro)
```

2.4.3 Terceira Forma Normal (3NF)

Um conjunto de tabelas está na Terceira Forma Normal (3NF) quando estiver na 2NF e cada um de seus atributos não-chave estiverem referindo-se diretamente à sua respectiva chave.

Analisando as tabelas criadas na 2NF, constatamos que estão na 3NF. Portanto, definimos as tabelas como:

```
OPERADOR(<a href="chapa_operador">chapa_operador</a>, nome_operador, telefone_operador, endereco_operador)

PCD(<a href="mailto:id_pcd">id_pcd</a>, data_inst_pcd</a>, latitude_pcd, longitude_pcd, altitude_pcd)

MEDIDOR(<a href="mailto:id_medidor">id_pcd</a>, data_leiture_pcd)

SERIE_HISTORICA(<a href="mailto:chapa_operador">chapa_operador</a>, <a href="mailto:id_pcd">id_medidor</a>, data_leitura, valor_medido, outlier)

PERIODO (<a href="mailto:id_pcd">id_periodo</a>, nome_periodo, descricao_periodo)

ESTATISTICA (<a href="mailto:id_pcd">id_pcd</a>, <a href="mailto:id_pcd">id_medidor</a>, <a href="mailto:id_pcd">id_periodo</a>, dia, mes, ano, minimo, media, maximo, desvio_padrao)

FILTRO (<a href="mailto:id_filtro">id_filtro</a>, nome_filtro, descricao_filtro)
```

Consideramos que os valores filtrados serão retornados por funções e/ou tabelas temporárias na forma dado_medido, dado_filtrado. Portanto, os dados filtrados não são armazenados em tabelas.

Mais adiante na integração com outros módulos poderemos reconsiderar esta decisão.

2.5 Exemplos de Dados

A título de exemplo, informamos abaixo 5±2 registros para cada entidade de nosso modelo.

Tabela 1: Exemplo de dados para a Tabela OPERADOR.

chapa_operador	nome_operador	telefone_operador	endereco_operador
1	José Silva	55 92 1234 5678	Igarapé, 5 – Lagoa – Manaus, AM
2	Maria Silva	55 68 4321 8765	Rua Riozinho, 123 – Bairro das Enchentes – Bujari, AC
3	Cacique Juruna		Tribo dos Piraraquaras, Alto Xingu, PA

Tabela 2: Exemplo de dados para a Tabela PCD.

id_pcd	data_inst_pcd	latitude_pcd	longitude_pcd	altitude_pcd
10	01/01/2000	-22,6625	-43,9567	370
10	01/01/2001	-22,5389	-43,7775	389
20	01/01/2000	-22,7489	-44,1247	440

Em nosso modelo, um mesmo PCD pode estar em locais diferentes desde que em datas diferentes. É o que acontece, por exemplo, com o PCD 10 que em 01/01/2000 estava em uma coordenada e em 01/01/2001 foi movido para outra coordenada.

Tabela 3: Exemplo de dados para a Tabela MEDIDOR.

id_medidor	descricao_medidor	parametro_medido
1	XPTO1	Altura pluviométrica (mm)
2	XPTO2	Temperatura (Celsius)
3	XPTO3	Lâmina D'Água (m)

Em nosso modelo, consideramos apenas 3 tipos de medidores. Na prática, haveria dezenas de tipos de medidores sendo talvez necessário especificar melhor cada medidor, armazenando, por exemplo: erro médio esperado, dados do fabricante, dados de calibração etc.

Tabela 4: Exemplo de dados para a Tabela SERIE_HISTORICA.

chapa_operador	id_pcd	id_medidor	data_leitura	valor_medido	outlier
1	10	1	01/01/2000 10:30:35	34	F
1	10	1	01/01/2000 10:32:35	35	F
1	10	1	01/01/2000 10:34:40	42	Т
2	20	1	01/01/2000 10:30:35	34	F
2	20	2	01/01/2000 10:30:35	50	F
2	20	3	01/01/2000 10:30:35	1,25	F
3	20	3	01/02/2000 12:30:35	1,35	F

Nota-se que o terceiro registro deste exemplo é um outlier pois seu valor está completamente fora do esperado, sendo pouco provável que a temperatura aumentasse 7 °C em apenas 2min.

Tabela 5: Exemplo de dados para a Tabela PERIODO.

id_periodo	nome_periodo	descricao_periodo
D	Dia	Cálculos estatísticos considerando períodos de 1 dia.
M	Mês	Cálculos estatísticos considerando períodos de 1 mês.
A	Ano	Cálculos estatísticos considerando períodos de 1 ano.

Tabela 6: Exemplo de dados para a Tabela ESTATISTICA.

id_pcd	id_medidor	id_periodo	dia	mes	ano	minimo	media	maximo	desvio_padı
1	10	D	01	01	2000	34,0	34,5	35,0	1,0
1	10	M	NULL	01	2000	34,0	34,5	35,0	1,0
1	10	A	NULL	NULL	2000	34,0	34,5	35,0	1,0
2	20	D	01	01	2000	34,0	34,0	34,0	0
2	20	M	NULL	01	2000	34,0	34,0	34,0	0
2	20	A	NULL	NULL	2000	34,0	34,0	34,0	0

Tabela 7: Exemplo de dados para a Tabela FILTRO.

id_filtro	nome_filtro	descricao_filtro
1	Média Móvel	Retorna o valor filtrado como sendo a média aritmética dos N valores anterioremente lidos numa série histórica.
2	Outlier	Preenche o campo outlier para uma determinada série histórica.
3	Mínimos	Retorna o valor filtrado como sendo o valor mínimo dos N valores anterioremente lidos numa série histórica. Valores com outlier=True são ignorados.
4	Máximos	Retorna o valor filtrado como sendo o valor máximo dos N valores anterioremente lidos numa série histórica. Valores com outlier=True são ignorados.

2.6 Dicionarização no ERWin 4.0

A definição das tabelans na 3NF foi inserida na ferramenta ERWin 4.0 gerando a versão 1.0 do Dicionário de Dados que é parcialmente visível na parte esquerda da Figura 1.

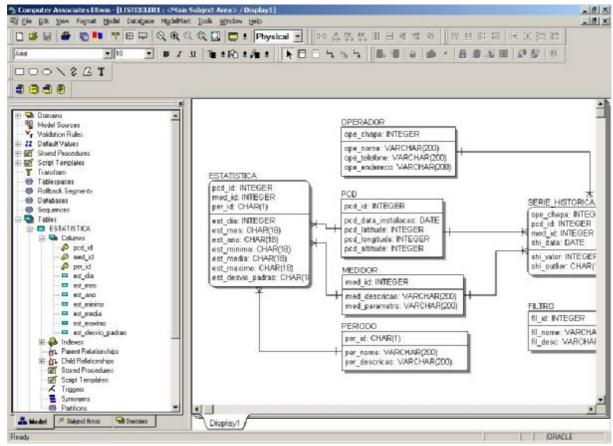


Figura 1: Vista parcial do dicionário de dados no ERWin 4.0

2.7 Modelo Entidade-Relacionamento

Com o auxílio do ERWin 4.0 foi obtido o Modelo Entidade-Relacionamento do módulo **ADE** (Figura 2).

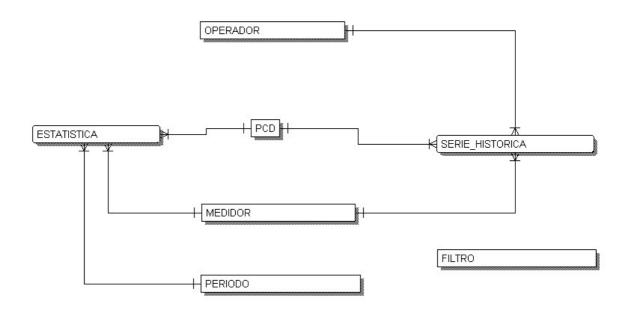


Figura 2: Modelo Entidade-Relacionamento do Módulo ADE no ERWin 4.0

2.8 Versão 1.0 do Modelo Lógico

Com o auxílio do ERWin 4.0 foi obtido o Modelo Lógico do módulo ADE (Figura 3).

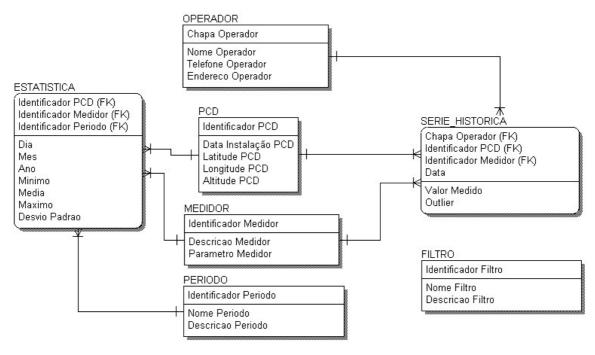


Figura 3: Modelo Lógico do Módulo ADE no ERWin 4.0

2.9 Versão 1.0 do Modelo Físico

A partir do Modelo Lógico e com o auxílio do ERWin 4.0, foi utilizada a Técnica da Trigramação para obter o Modelo Físico do módulo ADE (Figura 4).

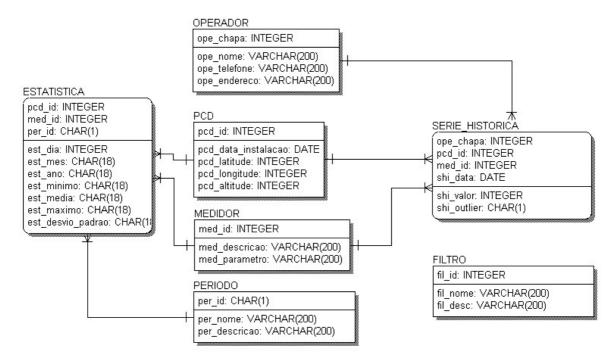


Figura 4: Modelo Físico do Módulo ADE no ERWin 4.0

3 Conclusão e Comentários

As técnicas de normalização e modelagem do curso CE-240 foram aplicadas ao módulo **ADE** (*Aplicação de Filtros e Cálculo de Estatísticas*) do *Sistema de Aquisição*, *Tratamento*, *Monitoramento e Difusão de Dados Hidrológicos* (**Sis ATMH**) obtendo-se sete entidades.

O número relativamente alto de entidades é justificado pelo módulo **ADE** ser o resultado da união dos módulos **ADF** (*Aplicação de Filtros*) e **CDL** (*Cálculo de Limites*) que em 23/03/2009 foram agrupados num único módulo visando compatibilizar o número de módulos a desenvolver com a quantidade de alunos desenvolvedores.

As técnicas de normalização e modelagem mostram-se muito eficientes, resultando na criação de tabelas na 3NF de modo praticamente direto. Houve certa dificuldade apenas para reconstruir as tabelas nas formas 2NF e 1NF, para fins didádicos, conforme solicitado na ListEx 3.

A definição da tabelas na 3NF foi inserida na ferramenta ERWin 4.0 o que permitiu gerar o Módelo Lógico e, quase simultaneamente, o Modelo Físico do módulo ADE. A técnica da trigramação foi aplicada, renomeando-se os atributos físicos criados automaticamente pelo ERWin 4.0.

Como sugestão, acredito que seria interessante exibir aos alunos a contextualização real da ANA bem como exemplos de dados reais para que estes tivessem uma visão mais prática do problema a ser resolvido.

4 Referências

- [1] CUNHA, ADILSON MARQUES DA. Notas de Aula de "CE-240 Projeto de Sistemas de Bancos de Dados" no Primeiro Período de 2009. ITA Instituto Tecnológico de Aeronáutica. Disponível em: http://www.comp.ita.br/~cunha. Acessado em: 04 de abril de 2009.
- [2] MARTINS, José RODOLFO S. e FADIGA JR.,FRANCISCO M. **Hidrologia Básica**. Notas de Aula de "Capacitação Tecnológica e Transferência de Tecnologia em Drenagem Urbana". 2003. EPUSP Escola Politécnica da Universidade de São Paulo. Disponível em: https://www.fcth.br/public/cursos/praiagrande/1%20-%20Hidrologia%20Basica.ppt. Acessado em: 05 de abril de 2009.
- [3] MEDEIROS, YVONILDE. **Precipitação**. Apostila do Curso "ENG-371 Hidrologia" do Grupo de Recursos Hídricos (GRH). Cap. 03. 2005. UFBA Universidade Federal da Bahia. Disponível em: http://www.grh.ufba.br/download/2005.2/Apostila(Cap3%20-%20Partel).pdf. Acessado em: 04 de abril de 2009.
- [4] RODRIGUES, ALEX PINHEIRO MACHADO. **Portal GPS**. Disponível em: http://www.portalgps.com.br. Acessado em: 06 de abril de 2009.
- [5] WIKIMEDIA FOUNDATION, INC. Wikipedia (*Datum*). Disponível em: http://pt.wikipedia.org/wiki/Datum. 2009. Visitado em: 04 de abril de 2009.
- [6] WIKIMEDIA FOUNDATION, INC. Wikipedia (*Outlier*). Disponível em: http://en.wikipedia.org/wiki/Outlier. 2009. Visitado em: 28 de março de 2009.